Development of Daily Peak Power Demand Forecasting Algorithm using ELM
نویسندگان
چکیده
منابع مشابه
Daily Nigerian Peak Load Forecasting Using Network
A daily peak load forecasting technique that uses artificial neural network presented in this paper. A neural network of used to predict the daily peak load for a period available using one step ahead prediction load to the actual load. The ith index is used as load for the ith day of the year following networks are trained by the back propagation algorithm. from the Nigerian national electric ...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Modeling and Forecasting Electric Daily Peak Loads Using Abductive Networks
Forecasting the daily peak load is important for secure and profitable operation of modern power utilities. Machine learning techniques including neural networks have been used for this purpose. This paper proposes the alternative modeling approach of abductive networks, which offers simpler and more automated model synthesis. Resulting analytical input-output models automatically select influe...
متن کاملPeak demand forecasting for a seasonal product using Bayesian approach
An actual demand-forecasting problem of the US apparel dealers is studied. Demand is highly fluctuating during the peak sale season and low prior to the peak season. The model is described by the continuous time stochastic process applying the Bayesian process. The standard gamma distribution is selected for the demand process and an inverse gamma distribution is chosen as the conjugate prior f...
متن کاملLong-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Transactions of the Korean Institute of Electrical Engineers P
سال: 2013
ISSN: 1229-800X
DOI: 10.5370/kieep.2013.62.4.169